

ANNUAL WATER QUALITY REPORT

Reporting Year 2022

Presented By
**Methuen Water
Department**

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2022. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users. Please remember that we are always available should you ever have any questions or concerns about your water.

What's a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection. For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Water Treatment Process

The treatment process consists of a series of steps. First, raw water is drawn from our water source and treated with chlorine dioxide, which allows for oxidation and disinfection of organic matter. The water then goes to the coagulation and flocculation mixing tanks, where alum is added. The addition of this substance causes small particles (called floc) to adhere to one another, making them heavy enough to settle into a basin from which sediment is removed. At this point, the water is filtered through layers of fine coal and silicate sand. As smaller suspended particles are removed, turbidity disappears and clear water emerges.

Chlorine is then added as a precaution against any bacteria that may still be present. (We carefully monitor the amount of chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste.) Finally, sodium hydroxide (to adjust the final pH and alkalinity) and a corrosion inhibitor (to protect distribution system pipes) are added before the water is pumped to sanitized underground reservoirs and water towers and into your home or business.

Important Health Information

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease

Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or <http://water.epa.gov/drink/hotline>.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please contact Melissa Woodbury, Water Treatment Plant Lab Director, at (978) 983-8845 or mwoodbury@ci.methuen.ma.us.

What Are PFAS?

Per- and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals used worldwide since the 1950s to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. During production and use, PFAS can migrate into the soil, water, and air. Most PFAS do not break down; they remain in the environment, ultimately finding their way into drinking water. Because of their widespread use and their persistence in the environment, PFAS are found all over the world at low levels. Some PFAS can build up in people and animals with repeated exposure over time.

The most commonly studied PFAS are perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). PFOA and PFOS have been phased out of production and use in the United States, but other countries may still manufacture and use them.

Some products that may contain PFAS include:

- Some grease-resistant paper, fast food containers/ wrappers, microwave popcorn bags, pizza boxes
- Nonstick cookware
- Stain-resistant coatings used on carpets, upholstery, and other fabrics
- Water-resistant clothing
- Personal care products (shampoo, dental floss) and cosmetics (nail polish, eye makeup)
- Cleaning products
- Paints, varnishes, and sealants

Even though recent efforts to remove PFAS have reduced the likelihood of exposure, some products may still contain them. If you have questions or concerns about products you use in your home, contact the Consumer Product Safety Commission at (800) 638-2772. For a more detailed discussion on PFAS, please visit <http://bit.ly/3Z5AMm8>.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the Department of Environmental Protection (DEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Where Does My Water Come From?

The first level of protection for any water supply system is a clean source of water. The only water supply for Methuen's water treatment plant is surface water from the Merrimack River, which starts in the White Mountains of New Hampshire. The Merrimack River covers over 4,672 square miles between the states of New Hampshire and Massachusetts. Because of the large recharge area, the Merrimack River has a very large capacity to supply water, even during extended droughts. Over the last 30 years, the river has undergone a tremendous change as far as water quality is concerned. Upstream wastewater plants installed in the late 1980s and elimination of hidden outfalls have contributed to the B classification of this river water.

Our intake station is directly alongside the river. The treatment plant pumps, on average, 4.5 million gallons per day (mgd) – with a high average in the summer months of 6 mgd – and approximately 1.7 billion gallons of drinking water per year. This dramatic increase of stress on our water supply is mostly caused by nonessential water use such as lawn irrigation. Methuen retains 10.6 million gallons of water storage in the distribution system. This storage helps maintain consistent water pressure throughout the 200 miles of underground pipes that deliver drinking water to homes and businesses.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. We are pleased to report that your drinking water meets or exceeds all federal and state requirements.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Regulated Substances							
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Barium (ppm)	2022	2	2	0.014	NA	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	2022	4	4	1.3	NA	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Chlorine (ppm)	2022	[4]	[4]	1.2	0.90–2.5	No	Water additive used to control microbes
Chlorite (ppm)	2022	1	0.8	0.001	ND–0.016	No	By-product of drinking water disinfection
Halogenated Acids [HAAs]–Stage 1 (ppb)	2022	60	NA	20	8.3–22.8	No	By-product of drinking water disinfection
Perchlorate (ppb)	2022	2	NA	0.2	ND – 0.2	No	Inorganic chemicals used as oxidizers in solid propellants for rockets, missiles, fireworks, and explosives
PFAS6 (ppt)	2022	20	0	3.5	1.7–3.5	No	Discharges and emissions from industrial and manufacturing sources associated with the production or use of these PFAS, including production of moisture- and oil-resistant coatings on fabrics and other materials; Additional sources include the use and disposal of products containing these PFAS, such as firefighting foams
Total Organic Carbon (ppm)	2022	TT ¹	NA	2.2	<0.500–7.0	No	Naturally present in the environment
TTHMs [total trihalomethanes]–Stage 1 (ppb)	2022	80	NA	51	15.6–69.8	No	By-product of drinking water disinfection
Turbidity ² (NTU)	2022	TT	NA	0.274	0.015–0.274	No	Soil runoff
Turbidity (lowest monthly percent of samples meeting limit)	2022	TT = 95% of samples meet the limit	NA	99	NA	No	Soil runoff

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

Substance (Unit of Measure)	Year Sampled	AL	MCLG	Amount Detected (90th %ile)	Sites Above AL/Total Sites	Violation	Typical Source
Copper (ppm)	2021	1.3	1.3	0.19	0/33	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2021	15	0	0.0038	0/33	No	Lead service lines; Corrosion of household plumbing systems, including fittings and fixtures; Erosion of natural deposits

SECONDARY SUBSTANCES

Substance (Unit of Measure)	Year Sampled	SMCL	MCLG	Amount Detected	Range Low-High	Violation	Typical Source
Aluminum (ppb)	2022	200	NA	95	NA	No	Erosion of natural deposits; Residual from some surface water treatment processes
pH (units)	2022	6.5-8.5	NA	6.9	6.9-7.8	No	Naturally occurring
Sulfate (ppm)	2022	250	NA	18	NA	No	Runoff/leaching from natural deposits; Industrial wastes
Total Dissolved Solids [TDS] (ppm)	2022	500	NA	68	NA	No	Runoff/leaching from natural deposits
Zinc (ppm)	2022	5	NA	0.104	NA	No	Runoff/leaching from natural deposits; Industrial wastes

UNREGULATED SUBSTANCES³

Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Typical Source
Bromodichloromethane (ppb)	2022	3.5	1.8-6.5	By-product of disinfection
Chlorodibromomethane (ppb)	2022	1.03	ND-3.1	By-product of disinfection
Chloroform (ppb)	2022	3.4	2.9-5.7	By-product of disinfection
Sodium (ppm)	2022	53	NA	Naturally present in the environment; Road salt
Sulfate (ppm)	2022	18	NA	Natural sources

¹The value reported under Amount Detected for TOC is the lowest ratio of percentage of TOC actually removed to percentage of TOC required to be removed. A value of greater than 1 indicates that the water system is in compliance with TOC removal requirements. A value of less than 1 indicates a violation of the TOC removal requirements.

²Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

³Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted.

Source Water Assessment

A source water assessment has been completed for our system. The purpose of the assessment is to determine the susceptibility of each drinking water source to potential contaminant sources. The report includes background information and a relative susceptibility rating of higher, moderate, or lower. It is important to understand that a susceptibility rating of higher does not imply poor water quality, only the system's potential to become contaminated within the assessment area. The assessment findings are summarized in the table below:

Susceptibility of Sources to Potential Contaminant Source		
Source Name	Susceptibility Rating	SWAP Report Date
Merrimack River	High	October 2003

If you would like a copy of our assessment, please feel free to contact our office during regular business hours at (978) 983-8845 or visit www.mass.gov/doc/methuen-water-department-swap-report/download.

Definitions

90th %ile: Out of every 10 homes sampled, 9 were at or below this level. This number is compared to the Action Level to determine lead and copper compliance.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (parts per trillion): One part substance per trillion parts water (or nanograms per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.